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Abstract

Regional Climate Models (RCMs) are valuable tools to evaluate impacts of climate
change (CC) at regional scale. However, as the size of the area of interest decreases,
the ability of a RCM to simulate extreme precipitation events decreases due to the
spatial resolution. Thus, it is difficult to evaluate whether a RCM bias on localized ex-
treme precipitation is caused by the spatial resolution or by a misrepresentation of the
physical processes in the model. Thereby, it is difficult to trust the CC impact projec-
tions for localized extreme precipitation. Stochastic spatial disaggregation models can
bring the RCM precipitation data at a finer scale and reduce the bias caused by spatial
resolution. In addition, disaggregation models can generate an ensemble of outputs,
producing an interval of possible values instead of a unique discrete value.

The objective of this work is to evaluate whether a stochastic spatial disaggrega-
tion model applied on annual maximum daily precipitation: (i) enables the validation of
a RCM for a period of reference, and (ii) modifies the evaluation of CC impacts over
a small area. Three simulations of the Canadian RCM (CRCM) covering the period
1961-2099 are used over a small watershed (130 km2) located in southern Québec,
Canada. The disaggregation model applied is based on Gibbs sampling and accounts
for physical properties of the event (wind speed, wind direction, and convective avail-
able potential energy (CAPE)), leading to realistic spatial distributions of precipitation.
The results indicate that disaggregation has a significant impact on the validation. How-
ever it does not provide a precise estimate of the simulation bias because of the dif-
ference in resolution between disaggregated values (4 km) and observations, and be-
cause of the underestimation of the spatial variability by the disaggregation model for
the most convective events. Nevertheless, disaggregation permits to determine that
the simulations used mostly overestimated annual maximum precipitation depth in the
study area during the reference period. Also, disaggregation slightly increases the sig-
nal of CC compared to the RCM raw simulations, highlighting the importance of spatial
resolution in CC impact evaluation of extreme events.
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1 Introduction

Extreme precipitation events may cause disasters, such as flooding, dam failure, soil
erosion, and landslide, which may have substantial social, economic and environmental
impacts. In many cases, as for instance dam building or development of new habitable
zone, a good knowledge of the occurrence of extreme events is required to properly
evaluate the risk (i.e. the expected cost of damage caused by extreme precipitation). In
a context of climate change (CC), past impact studies made with a stationary climate
assumption must be reconsidered.

There is a consensus in the scientific community about the existence of CC (IPCC,
2007). While an increase of the mean global temperature is expected from climate
model projections (IPCC, 2007), there is uncertainty associated with precipitation
change. The effect of CC on precipitation varies spatially and temporally. With regards
to extreme precipitation, Sunyer et al. (2012) used four Regional Climate Model (RCM)
projections in Danemark and obtained discordant results for 20- and 100-yr return pe-
riods. Fowler and Ekstrdm (2009) found an increase in extreme precipitation intensities
projected by climate models in United Kingdom, but the results varied between regions
and the variability increased with the return period. Using different projections from a
single climate model, Mladjic et al. (2011) detected significant increases in extreme
precipitation depths in 7 out of 10 climatic regions in Canada.

Because of this uncertainty, a robust CC impact evaluation for a given area must
include several future climate projections, coming from various climate models and
greenhouse gas (GHG) emission scenarios. A valuable criterion in the selection of a
climate model is the ability to simulate the recent past in the study area. This perfor-
mance is evaluated through a comparison between observed and simulated values of
the variable of interest.

For extreme events, the spatial resolution becomes very important. This implies that,
for a proper validation of a simulation, the spatial resolutions of observed and simulated
values must be similar. When the area of interest is small (e.g. an area smaller than
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a climate model grid box within which observations come from a single station), the
raw simulated values must be downscaled to a finer scale. In this case, the validation
of a simulation depends on the downscaling technique. Therefore, it is primordial that
the downscaling technique be realistic and robust to enable a precise evaluation of the
simulation bias.

Without an adequate downscaling technique, one can assume that the CC impact in
the area is the same as that in the grid box. However, this assumption does not stand
if the types of events, affecting the spatial distribution of precipitation, change in the
future (e.g. if there are more convective events due to an increase in temperature). A
popular method is the use of a single multiplicative factor that accounts for the change
in the mean (Sunyer et al., 2012). However, it is not suitable for extreme precipitation
since for a given location, the projected mean annual precipitation may decrease while
the number and magnitude of high precipitation events might increase (Amengual et
al., 2012). Also, the CC signal may be stronger for extreme than for moderate events
(Hanel et al., 2011).

There exist two approaches that bring a simulated field to a finer spatial scale. The
first approach is to run a climate model nested in a spatial domain smaller than the
original simulation. The smaller spatial domain permits to refine the spatial resolution
of the grid for the same computational requirements. This approach is often referred
to as dynamical downscaling (Boé et al., 2007). The most common example is the
use of a RCM to refine the resolution of Global Climate Models (GCMs). It is also
possible to run a RCM two or more times in domains nested one inside the other (Yu
et al., 2002). Dynamical downscaling produces physically sound data, but it in the end
requires intensive computational resources.

The second approach is to apply a stochastic model, for which each climate model
grid box is subdivided into several elements (pixels) whose precipitation depth is a ran-
dom variable depending on neighboring pixels and possibly other relevant variables.
This kind of models is often referred to as disaggregation models (e.g. Mackay et al.,
2001). Disaggregation models may be applied after dynamical downscaling. The ad-
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vantages of these models are their relative rapidity and simplicity of use, but they often
produce precipitation fields with unrealistic spatial structures, with visible discontinu-
ities (Lovejoy and Schertzer, 2010). Gagnon (2012) recently proposed a disaggrega-
tion model accounting for convective available potential energy (CAPE), wind speed
and wind direction that produces spatially coherent fields. This model has not been
applied yet to downscale precipitation from a climate model projection.

There are two objectives here. First, we want to determine whether the disaggrega-
tion model proposed by Gagnon (2012) enables the validation of the annual maximum
daily precipitation (AMDP) simulated by a RCM over a small area when only a single
observation point is available. Second, for the same small area and using the same
disaggregation model, we want to quantify the difference, if any, in the evaluation of the
CC impact on AMDP between raw and downscaled RCM simulations. The general mo-
tivation behind these two objectives is to provide reliable information to policy makers
who must manage the risk associated with CC projection for extreme precipitation over
a small area.

The next section introduces the study area along with a description of the observed
and simulated data. Section 3 presents the disaggregation model used in this study
(Gagnon, 2012; Gagnon et al., 2012). Section 4 describes the methodology applied to
evaluate the capability of the disaggregation model to validate a RCM simulation and
to enhance the CC impact evaluation. Section 5 shows the results of the validation and
the CC evaluation exercises. A conclusion (Sect. 6) completes the paper.

2 Case study

2.1 Study area

The study area is a 132 km? sub-watershed of the Yamaska River, located south of the
St. Lawrence River, Québec, Canada. The outlet of this sub-watershed is the Choiniere
dam (Fig. 1). It is one of the several small dams located in the Yamaska River water-
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shed, but is a high risk dam with respect to the city of Ste. Hyacinthe located down-
stream. A study of the impact of CC on the probable maximum flood (PMF) has already
been done for this sub-watershed (Rousseau et al., 2012), but no downscaling tech-
nique was used.

The climate is continental wet, characterized by large variations of temperature and
no dry season. The mean annual precipitation of the Yamaska River watershed is about
1200 mm, of which more than 900 mm is liquid (Rousseau et al., 2012). Most of winter
precipitation falls as snow while summer precipitation can come from either large-scale
or convective events. The Choiniére dam watershed, as most of the Yamaska River
watershed, is located in the St. Lawrence Lowlands, characterized by a flat topography
and arable soils. The extreme south-east or upstream region of the area is covered by
the Appalachian Mountains.

2.2 Observed data

Daily observed precipitation data come from the Québec Centre of Water Expertise
(Centre d’Expertise Hydrique du Québec, CEHQ) meteorological grid (CEHQ, 2012).
This grid has a 0.1° resolution and the data at each grid node are generated by kriging
interpolation of the surrounding weather station data (CEHQ, 2012). The observed
daily rainfall data retained for the validation exercise come from the only grid node
covering the Choiniére watershed (45.4° N, 72.5° W; Fig. 1). The dataset covers the
1961-2000 period and only the data from May to October are analyzed. November
to April data are not used in this work as we focus on liquid precipitation. In addition
to precipitation, daily minimum and maximum temperatures are also available on the
CEHQ grid, but are not used in the present study.

As the observed data come from interpolation, the exact spatial resolution of the
observations is unknown, affecting the comparison between raw simulated values and
those produced by the disaggregation model. However, resolution of the weather sta-
tion network is relatively high in this area, reducing the impact of the interpolation pro-
cedure.
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2.3 Simulated data

The simulated data come from three simulations, referenced as afx, agr and aha, of
the Canadian RCM version 4.2.3 (CRCM, Caya and Laprise, 1999; de Elia and Cété,
2010; Paquin, 2010). The CRCM has a three-dimensional grid with horizontal resolu-
tion of about 45 km (true at 60° N). The three simulations analyzed cover a domain of
111 x 87 grid nodes centered over the Province of Québec, Canada. The runs were
driven by atmospheric fields taken from members 4 and 5 of the third generation of the
Canadian Coupled Global Climate Model (CGCMS3; Flato et al., 2000; Flato and Boer,
2001; Scinocca et al., 2008) for afx and agr, respectively, and from member 1 of the
German Coupled Global Climate Model ECHAMS (Junglaus et al., 2006) for aha. The
data cover the 1961-2099 period and both global and regional simulations were per-
formed using the IPCC SRES A2 GHG and aerosol projected evolution (Nakicenovic
and Swart, 2000). Precipitation data from 1961 to 2000 are used for the comparison
between observed and simulated data while the 1961-2099 period is used for the CC
impact assessment. Only data from May to October are retained for the analyses.

In addition to precipitation, daily mean wind speed and wind direction at the 700 hPa
level as well as the daily mean CAPE simulated fields are required to run the disaggre-
gation model (Sect. 3). Five by five CRCM tiles, covering the Yamaska watershed, are
disaggregated, but the outcomes of only one tile (tile (3,4) of the 5 x 5 computational
domain), covering the studied watershed, are retained for the analyses (Fig. 1). The
authors are aware that a CC impact assessment study cannot be made with only three
simulations coming from only one RCM. The aim of this work is to evaluate a method-
ology; the results of this work must not be taken as a complete CC impact assessment
study.
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3 Disaggregation model

The disaggregation model used is a stochastic model that enables the use of informa-
tion produced using a 45-km resolution field to generate realistic fields at a finer spatial
scale (from 4 to 23-km resolution). The model is described in details in Gagnon (2012)
and a slightly different anterior version of the model is also presented in Gagnon et
al. (2012). This section describes the main features of the model.

3.1 Mathematical framework

Let /7; ; be the precipitation on pixel (/, j) for a given day. In this study, the spatial res-

olution of the pixel may be 4, 8 or 12km. The eight surrounding pixels are used to
define the mean precipitation in the four directions: A, = m A= %
A = m and A_ = 2225 1t is assumed that R; ; has a lognormal distri-
bution with the expected value i given by (Gagnon, 2012; Gagnon et al., 2012):

u=A+ﬁd<AI’;A-_A\;A/>+,BX<A/—A\>+,8+<A|—A_) (1)

where A is the mean precipitation of the eight surrounding pixels and G4, 8, and 3, are
parameters to estimate. The parameter B4 accounts for the distance of the surround-
ing pixels while the two others account for anisotropy. Equation (1) is the expected
value equation of Gagnon et al. (2012). In Gagnon (2012), this equation is modified by
expressing the two anisotropy parameters as functions of daily mean wind speed (V;
m 3‘1) and wind direction (W; degree) at 700 hPa:

By = B,V cos(2(W - 45°%) (2)

and

B, = B,V cos(2(W - 90°)). (3)
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Anisotropy is thereby accounted for by one parameter, 3, instead of two. In the present
study, V and W at 700 hPa come from CRCM simulations and the reference axis for W
is the west-east axis of the CRCM grid (Fig. 1).

The standard deviation o is assumed to increase with the expected value and to lin-
early increase with the daily mean convective available potential energy (CAPE) value
(Jkg™") of the CRCM tile (C):

0 = (0y +6,C) u’ (4)

where 6, 84 and 8, are parameters to estimate.

The parameter values were estimated for the southeast region of the United-States
since there was a high amount of precipitation data at a high spatial resolution. A
comparison with a small dataset covering southern Québec (near the study area) sug-
gested that the parameters estimated for the south-eastern United-States could be
used for summer precipitation in southern Québec (Gagnon, 2012).

3.2 Algorithm

Section 3.1 provided the statistical distribution of the daily precipitation at a pixel when
precipitation depths of the neighboring pixels are known. However, since only precipita-
tion of the RCM tile is known, a stochastic algorithm, based on Gibbs sampling (Geman
and Geman, 1984; Roberts and Smith, 1994), is used to produce finer-scale precipita-
tion fields using the aforementioned mathematical framework (Sect. 3.1).

Recall that 5 x 5 CRCM tiles are disaggregated, but only the values of the tile (3,4),
covering the Choiniére watershed, are used. The disaggregation model needs a buffer
zone around the area of interest to produce realistic precipitation fields (Gagnon, 2012).
For each 45-km CRCM tile, the disaggregation will produce n x n pixels per tile (n = 12,
6 and 4 for pixel sizes of 4, 8 and 12km, respectively). The algorithm proceeds as
follows for each day of each CRCM simulation:
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1

n

0

5

0

a. First, set the precipitation of each pixel equal to the precipitation of the coarser
CRCM tile. Thus, all pixels within a CRCM tile have the same amount of precipi-
tation.

b. Generate a new value for pixel (1,1) according to the distribution set in Sect. 3.1. If
it is the first iteration, the expected value is equal to the precipitation of the coarser
CRCM tile.

c. Generate new values for the other pixels, one at a time, according to the distri-
bution set in Sect. 3.1. The expected value and the standard deviation for a pixel
are updated according to the new precipitation values of the neighboring pixels.
When all pixels have been updated once, one iteration is completed.

d. Repeat steps (b) and (c) 300 times to annihilate the impact of the initial condition
(step a). The first disaggregated field is retained.

e. Repeat steps (b) and (c) 100 times to annihilate the autocorrelation with the last
retained disaggregated field. Then, a second disaggregated field is retained.

f. Repeat step (e) as many times as desired to retain several disaggregated fields. In
this work, 100 disaggregated fields are retained for each day of each simulation.

Note that for pixels located on a boundary of the disaggregation domain, Eq. (1) is
slightly modified to account for the fact that the pixel has less than eight neighbors
(Gagnon, 2012). Also note that this version of the disaggregation model does not ex-
plicitly account for topography. Gagnon (2012) showed that it is not necessary in areas
with no abrupt variations in elevations (like the study area), since the impact of to-
pography is indirectly accounted for in the CRCM precipitation fields. For a version of
the model adapted for highly variable topography, the reader is referred to Gagnon et
al. (2013).
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4 Methods
4.1 Validation of the simulations (1961-2000)

Climate simulation bias may be caused by a misrepresentation of the physical pro-
cesses by the climate model (physical bias) and/or by the difference between the spa-
tial resolution of the model and that of the observation (spatial resolution bias), The
first use of the disaggregation model in this work is to eliminate, or at least reduce the
spatial resolution bias to properly evaluate the physical bias of the climate simulation.
RCM simulated data driven by a GCM have no simultaneity with observations. Thus,
the distributions of simulated and observed AMDP must be compared without correla-
tion measures. Instead, the cumulative observed and simulated distributions of the 40
AMDPs (May to October; 1961-2000) are compared. The 40 maximum observed val-
ues come from the unique CEHQ grid node covering the watershed (Sect. 2.2; Fig. 1).
The annual maximum simulated series (Yys ym 5t € {1961,...,2000}) comes from
the CRCM grid node covering the watershed (raw values; Fig. 1) and from the results
of the disaggregation model for the 4-km pixel covering the CEHQ grid node (disag-
gregated values; Fig. 1). There are 40 raw values (1961 to 2000) and 100 series of 40

disaggregated values. Formally, let Y4(/2m ; o 0€ the precipitation on the 4-km pixel cov-

ering the CEHQ grid node (blue pixel, Fig. 1) for the kth retained disaggregated field
(k={1,...,100}; Sect. 3.2) of day d of the year t. The maximum daily precipitation for

year t and disaggregated field k, Y‘flﬁm +» Is given by:
(k) (k)

Y = max Y, . 5
4 km,t de{May,..., October}< 4 km,t,d) ( )

The Mann—Kendall test (Mann, 1945; Kendall, 1975) did not detect any trend for the
observed, raw simulated, and for most of the disaggregated series for the 1961-2000
period. Thus, it can be assumed that the 40 values of each series come from the same
distribution.
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Let X (p) be the pth percentile of the observed AMDP distribution for the refer-
ence period. For conciseness, let X = X (p). In the same manner, let Y,s5,, and

100
Y m = 11%/21 Y4(l:<)m (p) be the pth percentile of the AMDP for the raw simulation and

for the mean disaggregated series, respectively, for the same reference period. Also,
let T be the true (unknown) pth percentile of the AMDP values at the CEHQ grid node
scale (i.e. (X —T) = measurement error). The difference between Y5 ., (raw simulated
value) and T (“target” value) can be written as follows:

(Yaskm =T) = (Yaskm = Y um) + (Vg rm = X) + (X =T). (6)

The idea is to estimate each term according to percentile p. The term (Y45 km = Y4 km)
is the impact of the disaggregation and can be estimated from the disaggregated and
raw simulated data. This term accounts for most of the spatial resolution bias. The
difference between the disaggregated and observed values (Y, ., — X) can also be
estimated from the data. However, this latter term contains three sources of errors: (i)
the CRCM simulation bias (physical bias), (ii) the disaggregation model bias and (iii)
the difference in resolution between the 4-km pixel and the observation. The purpose
of the validation exercise is to evaluate (i); (ii) and (iii) can be seen as noise. For point
(i), Gagnon (2012) showed, for convective events, that the disaggregation can under-
estimate the 4-km daily precipitation by up to 50 % at worst. Since the calibration of
the disaggregation model was performed using four years only, the bias cannot be ex-
pressed as a function of p over 40yr. The exact value of point (iii) is unknown, but its
order of magnitude can be roughly estimated from the analyses of the disaggregation
results at 12, 8 and 4km (Fig. 1). The last term (X —T) is the difference between the
observed and the real value. It is caused by measurement errors. Measurement errors
are more important for solid than for liquid precipitation (Goodison et al., 1998; Yang et
al., 1999; Fortin et al., 2008). As only precipitation from May to October are analyzed,
this term is assumed negligible compared to other terms and is not considered here. It
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is thereby assumed that the left end side of Eq. (6) (Y45« — ) is approximately equal
to (Y25 km — X)-

To estimate the relative importance for a given p of the aforementioned effects, for
each climate simulation, each effect will be expressed with respect to the range of the
distribution of the 4-km disaggregated values.

4.2 Impact of climate change (1961-2099)

For the evaluation of the impact of CC on the watershed, the raw simulation and the
100 disaggregated series of AMDP (May to October, 1961-2099) are analyzed for
each CRCM simulation. Contrary to the validation exercise (Sect. 4.1), the disaggre-
gated values come from the mean of the values of the 13 pixels covering the Choiniére
watershed (yellow pixels, Fig. 1).

The CC impacts are compared in two manners. The first comparison is on the mag-
nitude and on the statistical significance of the long-term trend. The statistical signifi-
cance is evaluated from the non-parametric Mann—Kendall test (Mann, 1945; Kendall,
1975) and the magnitude is evaluated assuming a linear relationship between annual
maximum and time (year). Formally, the regression equation for a given raw simulation
(afx, agr or aha) and for any of the k disaggregated series (k = {1,...,100}) are given
by:

Y45 km,t = Bo 45 km + 51,45 km! (7)
and

(k)  _ plk) (k)
Yakme = Boakm ¥ P g kml (8)

respectively, where ¢ is the year. The (s estimated minimize the sum of squared errors
for each series over the period 1961-2099.
The second comparison is on the relative change between the maximum daily pre-
cipitation value over 50yr for the past (1961-2010) and the future (2050-2099). For-
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mally, let:

Y, = max Y, 9
4BKmP = aX 2010}( 45 kmit) 9)

and

Yias kmF = max (Va5 kmys) (10)

te{2050,...,2099}

be the raw simulated maximum daily precipitation over 50 yr for the past and the future,
respectively. The relative change Ays ., for the raw simulation is given by:

(11)

Y, -Y,
Aus 1 = 100 %( 45 km,F ~ Y45 km,P).

Y45 km,P

(k) (k) . . .
The values Y4 km.P and Y4 km £ are defined in the same manner to calculate the relative

change Aflkl)(m for each disaggregated series k. The comparison of the relative changes
is interesting from a practical point of view. In many cases (e.g. design of water infras-
tructures), the aim is to evaluate whether the highest expected extreme over a given
period of time will increase or not in the future.

5 Analyses of the results
5.1 Validation of the simulations (1961-2000)

In this subsection, we intend to distinguish the sources of errors accounted for in Eq. (6)

(Sect. 4.1). But before doing so, Fig. 2 presents the relative differences between the

raw simulated and observed distribution of daily precipitation from 1961 to 2000 (May

to October), along with the mean difference (bias) for the whole period. It illustrates

that despite the high positive overall bias for the three simulations (from 59 to 65 %);
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the more intense precipitation depths are sometimes underestimated. The fact that the
bias is strongly negatively correlated with the intensity of precipitation suggests that
the difference between the spatial resolution of the observed and simulated data has
a substantial impact on the daily bias. In all likelihood, the relatively good agreement
between observed and simulated high intensity daily precipitation occurs because the
positive bias of the simulations is counterbalanced by the negative bias induced by the
bulk spatial resolution of the CRCM grid node.

Figure 3 shows the relative difference between the median 12-, 8- and 4-km disag-
gregated pixels and the 45-km CRCM tile AMDPs. The impact of disaggregation seems
to increase with the intensity (return period) and to decrease with the pixel size, but the
variability prevents the exact appraisal of both effects. For the maximum value of daily
precipitation over 40 yr (May to October, 1961-2000), the differences between the me-
dian 12-km disaggregated pixel and the raw simulations vary between 8 and 27 % for
the three simulations. For the 8- and the 4-km disaggregated pixels, the differences
vary between 10 and 34 % and 14 and 46 %, respectively. These results suggest that
if the disaggregation model was calibrated and applied at a finer resolution (i.e., finer
pixels), the impact would have been greater, but it cannot be quantified with precision.

Figure 4 illustrates, for each climate simulation, observed, raw simulated, 5th, 50th
and 95th percentile of the disaggregated AMDPs (May to October, 1961-2000). The
uncertainty band of disaggregation (difference between the 5th and the 95th percentile)
increases with intensity (return period), which is expected. The overall fit, between the
raw simulated and the observed curves, is good for simulations afx and agr. However,
as stipulated above, this good fit is the effect of a negative bias caused by the difference
in spatial resolution and, in all likelihood, a positive bias caused by the physics of the
simulations.

In order to identify the bias of the climate simulations for the most extreme events,
Table 1 summarizes for each simulation the values of the terms of Eq. (6) for the daily
maximum over the 1961-2000 period. It shows that the impact of the disaggregation is
significant for simulations afx and agr. It also shows that the term (Y4* km ~ X) containing
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the bias of the CRCM simulation, the bias of the disaggregation model and the effect
of the resolution difference between the 4-km pixel and the observation is positive for
all simulations (12.1, 31.2 and 47.2 mm for afx, agr, and aha, respectively).

The estimation of the CRCM simulation bias, which is the purpose of the validation
exercise, cannot be made with precision since the disaggregation model bias and the
difference in resolution between the 4-km pixel and the observation are unknown with
exactitude. That being said, the results introduced in Gagnon (2012) and those illus-
trated herein (see Fig. 3) suggest that both impacts, of the disaggregation model bias
and of the difference in resolution between the 4-km pixel and the observations, should
be negative. It results that the value of (Y4* km ~ X) is a lower bound for the positive bias
of the CRCM simulation. For the present case, it implies that the bias of the CRCM sim-
ulation for the AMDP in the 1961-2000 period (May to October) is at least as high as
the difference between the disaggregated distribution and the observation series in
Fig. 4. As most 5th percentile disaggregated values are greater than observed values,
it can be said in these cases that the bias is positive with a significance level at least
as high as 90 % (may be more). Notable exceptions are the three highest maximum
annual daily values for afx and the smaller maximum annual values for the three simu-
lations. The most biased simulation is aha; even the raw simulated annual maximums
are higher than the observed maximums.

5.2 Impact of climate change (1961-2099)

Figure 5 shows the slope (8,) and the intercept (3;) of the linear regression of the
AMDP on the year over the 1961-2099 period for the disaggregated series and the
raw simulations. The maximum daily precipitation depths for 1960 estimated from the
linear regression are 40.4, 43.6 and 48.0 mm for raw simulations afx, agr and aha, re-
spectively. The 1960 maximum daily precipitation depths estimated in the same man-
ner from the disaggregated values over the Choiniére watershed are about 2 to 10 mm
higher.
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The mean increases over 100yr estimated from the linear regression are 4.5, 4.1
and 6.6 mm for raw simulations afx, agr and aha, respectively. The corresponding in-
creases for each simulation are 11.1, 9.4 and 13.8 % of the maximum annual estimated
for 1960. The increase is statistically significant at the 90 % level for the three raw sim-
ulations according to the Mann—Kendall test.

The mean increases for the disaggregated series are generally higher. Over 100 yr,
the median of the disaggregated increases are 5.8, 7.3 and 11.1 mm for simulations
afx, agr and aha, respectively. Relative to the median disaggregated daily maximum
estimated for 1960, these increases are 12.3, 14.9 and 20.8 %, respectively. The trends
of most disaggregated series are significant at the 90 % level according to the Mann—
Kendall test.

The higher increases for the disaggregated series are in all likelihood due to the
variable CAPE. CAPE is accounted for in the standard deviation equation (Eq. 4) of
the disaggregation model (Sect. 3). The Mann—Kendall test applied on the mean daily
CAPE value of the AMDPs indicates that CAPE significantly increases for most series,
raw and disaggregated. It means that extreme precipitation intensities come from more
convective events in the future. Convective events produce more intense local precip-
itation than large-scale events. For a given convective event, the local maximum may
or may not fall on the watershed, but over several events, some local maximum will fall
on the watershed and may produce higher annual maximum.

Figure 6 illustrates the relative difference between the highest daily precipitation for
the past (1961-2010) and future (2050-2099) for each raw and disaggregated series.
Both periods contain 50 yr to ensure a fair comparison. It shows that the maximum is
higher for the future than it is for the past for most series, but not for all cases. In fact, for
the raw agr simulation, the maximum decreases. For the disaggregated series, 23, 29
and 12 % of the series of simulations afx, agr and aha have negative relative changes,
respectively. It highlights the fact that for the most extreme events, the natural climate
variability is very important and can hide the CC signal.
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To evaluate whether the disaggregation modifies significantly the relative change of
the raw simulations, we calculated the percentage of disaggregated series for which
the relative change is higher than the relative change of the raw simulation. If this
percentage is large, let say larger than 90 %, the relative change induced by the disag-
gregation will be considered significant. The results indicate that the relative change is
higher than for the raw simulations for 58, 84 and 33 % of the disaggregated series of
afx, agr and aha, respectively. It indicates that the disaggregation may have an impact
in the evaluation of the CC signal, but it is not significant for the most extreme daily
values of the three simulations.

6 Conclusion

In this work, a stochastic disaggregation model (Gagnon, 2012) was used as a tool to
validate annual maximum daily precipitation (AMDP) for a reference period (1961—
2000; May to October) and to evaluate the impact of CC on a small watershed
(Choiniére watershed, sub-watershed of the Yamaska River, Province of Québec,
Canada). Three simulations coming from the same RCM (CRCM version 4.2.3) were
analyzed.

The validation results indicate that disaggregation has a significant impact for most
AMDP events (Fig. 4). Nevertheless, the disaggregation model did not permit to eval-
uate precisely the simulation bias (caused by a misrepresentation of the physical pro-
cesses) for daily extreme because of two main factors.

First, even if the disaggregation model refines the spatial resolution from 45 to
4 km, the gap between 4 km and the resolution of the observations might have a non-
negligible impact. To apply the disaggregation model at a finer scale, one needs to
estimate the model parameters at the target scale at first. It can be done for exam-
ple with radar composite data as performed in Gagnon et al. (2012, 2013). However,
if the observed data come from rain gauges; there will always be a gap between the
resolution of the radar and the rain gauge data.
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The second factor is the bias of the disaggregation model for the most convective
events (Gagnon, 2012). Although the model already accounts for this type of events,
more work need to be done to better understand the role of CAPE on the spatial distri-
bution of the precipitation at the local scale.

Despite these two limitations, the disaggregation model provided a way to illustrate
that the AMDPs were significantly positively biased for most years for the three simula-
tions, and in particular for the maximum over 40 yr for simulations agrand aha (Table 1,
Fig. 4).

For the CC evaluation, the results indicate that AMDPs tend to increase for both raw
simulated and disaggregated series (Fig. 5). For the comparison of the maximum daily
precipitation over 50yr between the past (1961-2010) and the future (2050-2099),
the CC signal is slightly stronger for the disaggregated series compared to the raw
simulation, but not significantly. It would be interesting to test whether an enhanced
version of the disaggregation model, with a better representation of the role of CAPE,
would increase the impact of the CC signal at local scale.

Despite the fact that the disaggregation does not change significantly the CC signal,
disaggregation provides valuable information. In this work, each day was disaggre-
gated 100 times, allowing for the calculation of confidence intervals for each simula-
tion. It is noteworthy considering the small amount of extreme event data and their high
variability. From a practical point of view, the ensemble of disaggregated series could
be used to estimate an exceedance probability for a given future horizon.

To sum up, the difference in spatial resolution between climate models and the area
of interest must be accounted for in a study about extreme precipitation events in a
small area. For validation purposes, this difference in spatial resolution represents an
important source of errors and might be more important than the bias of the climate
models. For CC projections, it is one source of uncertainty among others and should be
considered as well as uncertainty of climate models, size of the domain (when RCMs
are used), GHG emission scenarios, etc. While the disaggregation model used in this
work could be improved, this study has illustrated that it could be a valuable tool to
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conduct an impact assessment study. In addition to the fact that the model preserves
the spatial structure of the field, one advantage is that the parameterization is related
to physical properties of the events (CAPE, wind speed and wind direction). It allows
the model to be more robust to CC or to applications in non-calibrated areas.
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Table 1. Estimation of the sources of errors (Eq. 6) for the maximum daily precipitation in the
1961-2000 period (May to October only). In parentheses, the values are expressed as the per-
centage of the half distance between the 5th and the 95th percentiles of the 4-km disaggregated
data. Values higher than 100 % are in bold.

Simulation
Term afx agr aha
(Yas km — X) -13.4mm (-66.5%) -3.6mm (-12.0%) 32.2mm (73.9 %)
Yiskm—Ys km) -26.0mm (-129.1%) -38.2mm (-126.4%) -22.2mm (-51.0%)
Y m—X) 12.6mm (62.6 %) 34.6 mm (114.4 %) 54.4mm (124.9 %)
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Fig. 2. Relative difference (%) between simulated and observed distributions of daily precip-
itation for the reference period (May to October; 1961-2000). The dotted lines are the mean
relative bias for the three simulations over the whole reference period.
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Fig. 3. Relative difference (%) between disaggregated (at 12, 8 and 4 km) and raw simulated
AMDPs for the three simulations during the reference period (May to October; 1961-2000).
Data are sorted out according to the magnitude of the raw simulated maximum annual (Year
1 = year with the smallest simulated maximum annual; Year 40 = year with the highest simulated

maximum annual).
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Fig. 4. Observed (black line), raw simulated (red line), and disaggregated (blue solid line: me-
dian; blue dotted lines: 5th and 95th percentile) AMDPs for simulations afx (left), agr (middle)
and aha (right). The series are sorted in ascending order.
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Fig. 5. Intercept and slope of the linear regression of the AMDP on the year for the 1961-2099
period for the disaggregated series (circles) and the raw simulations (stars) for afx (blue), agr
(green) and aha (red). The size of the symbols increases with the level of significance of the

trend (from the Mann—Kendall test).
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Fig. 6. Boxplot of the relative change (%) between the maximum daily precipitation values for
the future (2050—2099) and for the past (1961-2010) for the 100 disaggregated series of each

simulation. The stars are the relative change for the raw simulations.
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